Affiliation:
1. Department of Electrical and Computer Engineering University of California San Diego La Jolla San Diego CA 92093 USA
2. Department of Electrical and Computer Engineering Photonics Center Boston University 8 St. Mary's Street Boston MA 02215 USA
3. Center for Memory and Recording Research University of California San Diego La Jolla San Diego CA 92093‐0401 USA
Abstract
AbstractTo address the ever‐increasing need for higher speed and density of information storage, recent developments in ultrafast optical switching have focused on deterministic control of magnetic properties of materials using femtosecond circularly polarized optical pulses. However, a monolithic high‐speed optical helicity‐dependent switching at room temperature has remained elusive. In recent years, ultra‐thin flat optical structures, known as metasurfaces, have been developed that offer a versatile way to manipulate electromagnetic fields using subwavelength spatial resolution. Here, a monolithic multilayer nanostructure capable of achieving optical helicity‐dependent switching in arbitrary geometries using femtosecond meta‐circularly polarized optical pulses is theoretically described and experimentally demonstrated at room temperature. The proposed monolithic meta‐magnetic platform provides a practical route to reform the current data memory, storage, and information processing technologies in integrated opto‐magnetic systems, holding great promise for cutting‐edge applications in information, spintronics, sensing, and memory storage devices.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献