Integrating deep convolutional surrogate solvers and particle swarm optimization for efficient inverse design of plasmonic patch nanoantennas

Author:

Hemayat Saeed1,Moayed Baharlou Sina12,Sergienko Alexander2,Ndao Abdoulaye12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering , University of California San Diego , La Jolla , CA 92093 , USA

2. Department of Electrical and Computer Engineering and Photonics Center , 8784 Boston University , 8 Saint Mary’s Street , Boston , MA 02215 , USA

Abstract

Abstract Plasmonic nanoantennas with suitable far-field characteristics are of huge interest for utilization in optical wireless links, inter-/intrachip communications, LiDARs, and photonic integrated circuits due to their exceptional modal confinement. Despite its success in shaping robust antenna design theories in radio frequency and millimeter-wave regimes, conventional transmission line theory finds its validity diminished in the optical frequencies, leading to a noticeable void in a generalized theory for antenna design in the optical domain. By utilizing neural networks, and through a one-time training of the network, one can transform the plasmonic nanoantennas design into an automated, data-driven task. In this work, we have developed a multi-head deep convolutional neural network serving as an efficient inverse-design framework for plasmonic patch nanoantennas. Our framework is designed with the main goal of determining the optimal geometries of nanoantennas to achieve the desired (inquired by the designer) S 11 and radiation pattern simultaneously. The proposed approach preserves the one-to-many mappings, enabling us to generate diverse designs. In addition, apart from the primary fabrication limitations that were considered while generating the dataset, further design and fabrication constraints can also be applied after the training process. In addition to possessing an exceptionally rapid surrogate solver capable of predicting S 11 and radiation patterns throughout the entire design frequency spectrum, we are introducing what we believe to be the pioneering inverse design network. This network enables the creation of efficient plasmonic antennas while concurrently accommodating customizable queries for both S 11 and radiation patterns, achieving remarkable accuracy within a single network framework. Our framework is capable of designing a wide range of devices, including single band, dual band, and broadband antennas, with directivities and radiation efficiencies reaching 11.07 dBi and 75 %, respectively, for a single patch. The proposed approach has been developed as a transformative shift in the inverse design of photonics components, with its impact extending beyond antenna design, opening a new paradigm toward real-time design of application-specific nanophotonic devices.

Funder

The Arnold and Mabel Beckman Foundation

Air Force Office of Scientific Research

PAIR-UP program sponsored by ASCB

The Gordon Moore Foundation

he Burroughs Wellcome Funds

2022 Scialog: Advancing BioImaging

Kavli Innovation Grant

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3