Integrating deep convolutional surrogate solvers and particle swarm optimization for efficient inverse design of plasmonic patch nanoantennas
Author:
Hemayat Saeed1, Moayed Baharlou Sina12, Sergienko Alexander2, Ndao Abdoulaye12ORCID
Affiliation:
1. Department of Electrical and Computer Engineering , University of California San Diego , La Jolla , CA 92093 , USA 2. Department of Electrical and Computer Engineering and Photonics Center , 8784 Boston University , 8 Saint Mary’s Street , Boston , MA 02215 , USA
Abstract
Abstract
Plasmonic nanoantennas with suitable far-field characteristics are of huge interest for utilization in optical wireless links, inter-/intrachip communications, LiDARs, and photonic integrated circuits due to their exceptional modal confinement. Despite its success in shaping robust antenna design theories in radio frequency and millimeter-wave regimes, conventional transmission line theory finds its validity diminished in the optical frequencies, leading to a noticeable void in a generalized theory for antenna design in the optical domain. By utilizing neural networks, and through a one-time training of the network, one can transform the plasmonic nanoantennas design into an automated, data-driven task. In this work, we have developed a multi-head deep convolutional neural network serving as an efficient inverse-design framework for plasmonic patch nanoantennas. Our framework is designed with the main goal of determining the optimal geometries of nanoantennas to achieve the desired (inquired by the designer) S
11 and radiation pattern simultaneously. The proposed approach preserves the one-to-many mappings, enabling us to generate diverse designs. In addition, apart from the primary fabrication limitations that were considered while generating the dataset, further design and fabrication constraints can also be applied after the training process. In addition to possessing an exceptionally rapid surrogate solver capable of predicting S
11 and radiation patterns throughout the entire design frequency spectrum, we are introducing what we believe to be the pioneering inverse design network. This network enables the creation of efficient plasmonic antennas while concurrently accommodating customizable queries for both S
11 and radiation patterns, achieving remarkable accuracy within a single network framework. Our framework is capable of designing a wide range of devices, including single band, dual band, and broadband antennas, with directivities and radiation efficiencies reaching 11.07 dBi and 75 %, respectively, for a single patch. The proposed approach has been developed as a transformative shift in the inverse design of photonics components, with its impact extending beyond antenna design, opening a new paradigm toward real-time design of application-specific nanophotonic devices.
Funder
The Arnold and Mabel Beckman Foundation Air Force Office of Scientific Research PAIR-UP program sponsored by ASCB The Gordon Moore Foundation he Burroughs Wellcome Funds 2022 Scialog: Advancing BioImaging Kavli Innovation Grant
Publisher
Walter de Gruyter GmbH
Reference79 articles.
1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, 1987. https://doi.org/10.1103/PhysRevLett.58.2059. 2. S. Y. Lin, et al.., “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, vol. 394, no. 6690, pp. 251–253, 1998. https://doi.org/10.1038/28343. 3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. https://doi.org/10.1126/science.1125907. 4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science, vol. 305, no. 5685, pp. 788–792, 2004. https://doi.org/10.1126/science.1096796. 5. N. Yu, et al.., “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011. https://doi.org/10.1126/science.1210713.
|
|