Bridging Chloride Anions Enables Efficient and Stable InP Green Quantum‐Dot Light‐Emitting Diodes

Author:

Wu Qianqian1,Wang Lin1ORCID,Cao Fan1,Wang Sheng1,Li Lufa1,Jia Guohua2,Yang Xuyong1ORCID

Affiliation:

1. Key Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai University 149 Yanchang Road Shanghai 200072 P. R. China

2. School of Molecular and Life Science Curtin University Bentley WA 6102 Australia

Abstract

AbstractZnMgO nanoparticles (NPs) are commonly used as the electron transport layer (ETL) in indium phosphide (InP) based quantum dots light‐emitting diodes (QLEDs). It has been experimentally found that the inherent oxygen vacancy defects in ZnMgO can be passivated by halogen additives. However, an in‐depth understanding of how the halogen additives in ZnMgO affect the quantum dots (QDs) films is currently missing. Here, the study reports on efficient and stable indium phosphide (InP) green QLEDs by effectively bridging QDs and ETL using chloride (Cl) ions. As bi‐functional anchoring additives, Cl ions not only passivate the oxygen vacancy defects of ZnMgO NPs for suppressing the exciton quenching at the QDs/ZnMgO interfaces, but also facilitate the hole transport of QDs due to part replacement of insulated oleic acid ligands on the surfaces of InP QDs with Cl anions for more balanced charge injection in the devices. Consequently, the optimized green InP QLED achieves a peak external quantum efficiency (EQE) of 13.8% and an operational lifetime of 5944 h, which, to the best of current knowledge, represents the best overall performance among the reported green InP QLEDs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Program of Shanghai Academic Research Leader

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3