Multi‐Type Topological States in Higher‐Order Photonic Insulators Based on Kagome Metal Lattices

Author:

Tao Liyun1,Liu Yahong1ORCID,Zhou Xin2,Du Lianlian1,Li Meize1,Ji Ruonan1,Song Kun1,Zhao Xiaopeng1

Affiliation:

1. School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710129 P. R. China

2. The National Research Institute of Radio Spectrum Management Xi'an 710061 P. R. China

Abstract

AbstractTunability of topological photonic structures opens a new avenue for photonics research. The rich physical characteristics of the topological photonics have great significance in practical implementations. In this paper, multi‐type topological states are demonstrated in higher‐order photonic topological insulators based on Kagome metal lattices. By stretching or rotating Kagome metal lattices, two types of topological insulators are obtained, and multi‐type topological states are observed. By stretching Kagome metal lattices, a 1D topological edge state and two types of higher‐order topological corner states (corresponding to a traditional higher‐order topological corner state based on nearest‐neighbor coupling and a new higher‐order corner state caused by long‐range interactions) are obtained in a classical quantization of dipole moments higher‐order topological insulators. By rotating Kagome metal lattices, dual‐band higher‐order valley‐Hall topological insulators are achieved with nodal ring degeneracy. Odd‐type and even‐type topological states are obtained. Achieving reconfigurable, multi‐type, and multi‐band topological insulators by using a single structural unit provides interesting insights into topological photonics and provides an unconventional approach to explore photonic systems and condensed matter physics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3