Evolution of an Overlapped Bandgap and Topological Flat Bands in a Higher‐Order Valley Photonic Insulator Based on Dendritic Structure

Author:

Li Meize1,Liu Yahong1ORCID,Tao Liyun1,Ma Shaojie2,Dong Yibao1,Li Zhenfei1,Du Lianlian1,Guo Yao1,Song Kun1,Zhao Xiaopeng1

Affiliation:

1. School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710129 China

2. Department of Optical Science and Engineering Fudan University Shanghai 200433 China

Abstract

AbstractRobust edge states and corner states in photonic topological insulators provide effective ways to manipulate the propagation of electromagnetic waves. Bandgaps of the previously reported photonic topological insulators are independent of each other. In this paper, a higher‐order valley photonic insulator composed of arrays of dendritic structure is designed. The band structure shows an overlapped bandgap is observed, and the overlapped bandgap divides the band structure into three bandgaps. The evolution of the overlapped bandgap is investigated by changing the geometric parameters and increasing the fractal to break the C3v symmetry drastically. Besides, it is notable that the band structure of the proposed valley photonic insulator is flat bands. It is demonstrated that undistorted transmission can be observed as a plane electromagnetic wave transmits through the proposed valley photonic insulator. The interface consisting of two valley photonic structures with distinct topological nontrivial phases is constructed. Edge states and corner states with strong energy localization are obtained in multi‐band frequencies. Remarkably, two triangular structures with different Wannier center configurations both have corner states in the same bandgap, which does not obey the valley selectivity. The phenomenon is caused by the weak valley locking property due to the overlapped bandgap. The proposed valley photonic insulators are expected to benefit applications in optical devices such as topological lasers.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3