Affiliation:
1. NEST CNR‐Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 Italy
2. School of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UK
3. School of Physics and Astronomy University of Leeds Leeds LS2 9JT UK
Abstract
AbstractAssessing the nature of topological quantum materials, and in particular probing the existence of topological surface states, is a very challenging task. Terahertz (THz) frequency scattering near‐field optical microscopy has emerged as an effective technique to investigate the presence of massless surface carriers by locally probing collective surface excitations, i.e., plasmon polaritons, whose dispersion critically depends on the density and nature of surface carriers. Here, thin (14–19 nm) films of Bi2Se3 are experimentally investigated through a combination of x‐ray diffraction, Hall‐bar magneto‐transport, and near‐field detectorless optical holography at THz frequencies, from 2 to 4.3 THz. The dispersion of surface plasmon polaritons are determined for different Bi2Se3 film thicknesses, proving the presence of massless surface carriers. The results open intriguing opportunities in THz nano‐plasmonics and topological nano‐photonics including the development of superlenses and metasurfaces, making use of plasmon polaritons.
Funder
European Research Council
Engineering and Physical Sciences Research Council
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献