Affiliation:
1. KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 South Korea
2. Department of Integrative Energy Engineering, College of Engineering Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 South Korea
3. KIST Brain Research Institute Korea Institute of Science and Technology 5 Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 South Korea
Abstract
AbstractControlling the growth and selection of chiral inducers is crucial for the generation of chiral inorganic structures as observed in nature. Herein, the plasmonic chirality evolution from the Au cube seed under the presence of L‐ or D‐amino acid as a chiral inducer is reported. The 432 Helicoid I structure is obtained using tryptophan (Trp), identical to the result with cysteine (Cys). The use of tyrosine (Tyr) produced a Helicoid IV‐type structure. However, no distinctive chiral structures can be obtained using phenylalanine (Phe), valine (Val) and leucine (Leu), which indicates the critical role of amino acids in chirality evolution. In particular, Trp‐Helicoid I nanoparticles (NPs) showed excellent enantioselective response toward L‐ or D‐Cys in the colorimetric assay and Raman analysis in the presence of Trp. Furthermore, the chiroptical property with a nanogap of 23.78 ± 0.82 nm in the Helicoid I structure further expands its applications for highly sensitive and quantitative chiral analysis for small molecules such as R/S‐epichlorohydrin (ECH), R/S‐limonene (LM), and R/S‐2‐butanol (BuOH) using a non‐polarized light source. The finding of amino acid‐dependent chirality evolution can widen the current understanding of chirality evolution in nature, and the use of helicoid structures with nanogaps incorporated with surface‐enhanced Raman scattering (SERS) can open a new avenue for chiral spectroscopic analysis.
Funder
National Research Foundation of Korea
Korea University
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献