Enantioselective Surface‐Enhanced Raman Scattering by Chiral Au Nanocrystals with Finely Modulated Chiral Fields and Internal Standards

Author:

Tian Yu12,Wu Fengxia12,Lv Xiali12,Luan Xiaoxi12,Li Fenghua12,Xu Guobao12,Niu Wenxin12ORCID

Affiliation:

1. State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China

Abstract

AbstractThe chiral discrimination of enantiomers is crucial for drug screening and agricultural production. Surface‐enhanced Raman scattering (SERS) is proposed for discriminating enantiomers benefiting from chiral plasmonic materials. However, the mechanism of enantioselective SERS is unclear, and fluctuating SERS intensities may result in errors. Herein, this work demonstrates a reliable SERS substrate using chiral Au nanocrystals with finely modulated chiral fields and internal standards. Chiral electromagnetic fields are enhanced after modulation, which is conducive to increasing the difference in the enantiomeric SERS intensity, as evidenced by the experimental and simulation results. Furthermore, the SERS stability is improved by the corrective effect of the internal standards, and the relative standard deviation is significantly reduced. Using finely modulated chiral fields and internal standards, L‐ and D‐phenylalanine exhibit a stable six times difference in SERS ratio. Theoretical simulations reveal that linearly polarized light can also excite the chiral fields of chiral Au nanocrystals, indicating non‐chiral far‐field light is converted into chiral near‐field sources by chiral Au nanocrystals. Thus, the mechanism of enantioselective SERS can be elucidated by the scattering difference of chiral molecules in chiral near fields. This study will pave the way for the development of enantioselective SERS and related chiroptical technologies.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3