Affiliation:
1. State Key Laboratory for Manufacturing Systems Engineering Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
2. State Key Laboratory for Mechanical Behavior of Materials International Joint Laboratory for Micro/Nano Manufacture and Measurement Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
Abstract
AbstractFlexible electronics strongly demand the integration of flexible and large‐scale multifunctional oxides. BiFeO3 is one of the most essential multifunctional oxides that could be used in memories, logics, sensors, and actuators. Recently, freestanding single‐crystalline BiFeO3 membranes exhibited superior elasticity and flexibility. However, fabrication and integration of large‐scale freestanding BiFeO3 membranes into flexible electronics remain elusive. In this study, inch‐scale freestanding single‐crystalline BiFeO3 membranes are fabricated with assistance from a water‐soluble sacrificial layer. To transfer flat and crack‐free membranes, all the existing methods are first followed but fail. Then the study introduces a temporary supporting Cu layer on the surface of the as‐grown SiTiO3/Sr3Al2O6/(SrRuO3/)BiFeO3 heterostructure and successfully obtains full and crack‐free 5 mm × 5 mm freestanding membranes on various substrates. The residual strain within the heterostructure releases gradually under the protection of the Cu layer. The freestanding BiFeO3 membranes are relatively uniform among different regions and exhibit good dielectric, ferroelectric, and ferromagnetic properties. Finally, flexible ferroelectric photovoltaic devices are patterned based on those BiFeO3 membranes, and they have open circuit voltage and short circuit current density up to −0.25 ± 0.03 V and 0.82 ± 0.09 µA cm−2, respectively.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献