A Spin‐Orbit Torque Switch at Ferromagnet/Antiferromagnet Interface Toward Stochastic or Memristive Applications via Tailoring Antiferromagnetic Ordering

Author:

Wang Ssu‐Yuan1,Chen Sheng‐Huai2,Chang Hao‐Kai1,Li Yi‐Ting1,Tseng Chih‐Hsiang2,Chen Po‐Chuan2,Yang Chao‐Yao13ORCID,Lai Chih‐Huang2

Affiliation:

1. Department of Materials Science and Engineering National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

2. Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300044 Taiwan

3. Undergraduate Degree Program of Systems Engineering and Technology National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

Abstract

AbstractAntiferromagnet (AFM) has currently participated in the spin‐orbit torque (SOT) technology due to its great potential to be applied to the field‐free SOT switching and to promote the thermal stability of MRAM. However, the effect of varying AFM ordering on the SOT switching and the associated properties is still not comprehensively understood. This work reports how an AFM ordering modifies the strength of Dzyaloshinskii–Moriya‐interaction (DMI) in a heavy metal (Pt)/FM (Co)/AFM (IrMn) trilayer and its effects on SOT switching. Increasing the AFM ordering reflects the enhanced exchange bias through increasing IrMn thickness appears to significantly reduce the DMI strength of the trilayer. Controlling the IrMn thickness appears to serve as a unique switch to activate memristivity/stochasticity in the devices via tailoring AFM ordering on exchange bias: The strong AFM ordering via increasing IrMn thickness enables to increase the stability of multi‐levels for SOT switching, which promotes the memristivity for neuromorphic application. On the contrary, the weak AFM ordering via reducing IrMn thickness will lead to significant stochasticity for the physically unclonable functionality. This work demonstrates an intrinsic tuning over the AFM ordering will serve as a switch to turn the SOT device into a stochastic/memristive cell to bridge probabilistic and neuromorphic computing.

Funder

Ministry of Science and Technology, Taiwan

National Science and Technology Council

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3