Affiliation:
1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
2. Spintronics Institute University of Jinan Jinan 250022 China
Abstract
AbstractIn the field of information hardware security, random variations obtained during device manufacturing process play a key role in generating unique and unclonable security keys. Existing physical unclonable functions (PUFs) utilizing these static randomnesses usually exhibit static challenge‐response pairs, which cannot be refreshed and limit their application prospects. Here, it is demonstrated that purely electrical controllable spin–orbit torque (SOT)‐based reconfigurable PUFs (rPUFs) can be realized in Pt/IrMn/Co/Ru/CoPt heterojunctions. By applying current pulses along two orthogonal directions, both the exchange bias between IrMn and Co and the SOT switching polarity (clockwise or counterclockwise) of perpendicularly magnetized CoPt can be reversibly controlled, which enables the realization of four rPUF states within a single device. By taking advantages of the sample growth and micro‐nanofabrication induced variations in the critical switching current density of SOT‐driven magnetization switching, the rPUF device with relatively good uniqueness and low bit error rate is achieved. Our work provides an approach to information hardware security and broadens the application of spintronics.
Funder
National Natural Science Foundation of China
Taishan Scholar Project of Shandong Province
Subject
Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献