Biological UV Photoreceptors‐Inspired Sn‐Doped Polycrystalline β‐Ga2O3 Optoelectronic Synaptic Phototransistor for Neuromorphic Computing

Author:

Yoon Youngbin1ORCID,Kim Youngki1,Hwang Wan Sik2ORCID,Shin Myunghun1ORCID

Affiliation:

1. School of Electronics and Information Engineering Korea Aerospace University Goyang 10540 Republic of Korea

2. Department of Materials Science and Engineering Korea Aerospace University Goyang 10540 Republic of Korea

Abstract

AbstractIn this study, the authors fabricate Sn‐doped 100‐nm thick polycrystalline β‐Ga2O3 synaptic field‐effect transistors (FETs) emulating optical and electrical spike stimulation. When stimulated by deep ultraviolet (UV) optical spikes or electric voltage spikes at the gate, the devices exhibit several essential synaptic functions of excitatory‐postsynaptic currents (EPSCs), inhibitory‐postsynaptic currents (IPSCs), paired‐pulse facilitation (PPF), spike‐number‐dependent plasticity (SNDP), and spike‐timing‐dependent plasticity (STDP). Following UV optical stimulation, the devices mimic synaptic plasticity with a photogate effect, and the gate voltage stimulation emulates the synaptic weights according to the state of the gate dielectric interface. The β‐Ga2O3 synaptic FET demonstrates synergistic functions in various optoelectronic stimulation modes and successfully mimics the visual memory formation in bees with UV photoreceptors. Moreover, to verify the translation of optoelectrical‐derived synaptic behaviors of β‐Ga2O3 synaptic FETs into artificial neuromorphic computing, handwritten digit image recognition of the Modified National Institute of Standards and Technology dataset is performed using a convolutional neural network, and a learning accuracy of 96.92% is achieved. The realization of these fundamental functions of biological synapses suggests the utility of Ga2O3‐based optoelectronic devices for next‐generation neuromorphic computing.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3