Optimizing the Ferroelectric Performance of Hf0.5Zr0.5O2 Epitaxial Film by La0.67Sr0.33MnO3 Capping Layer

Author:

Liu Kuan1,Liu Kai1,Zhang Xingchang2,Jin Feng1,Fang Jie1,Hua Enda1,Ye Huan1,Zhang Jinfeng1,Liang Zhengguo1,Lv Qiming1,Wu Wenbin134,Ma Chao2,Wang Lingfei1ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China

2. College of Materials Science and Engineering Hunan University Changsha 410082 China

3. High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230031 China

4. Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

Abstract

AbstractHafnium‐oxide‐based ferroelectrics have garnered considerable research interest, primarily for their robust ferroelectricity at the nanoscale and their high compatibility with complementary metal‐oxide‐semiconductors processes. However, the impact of electrodes on the ferroelectric properties of hafnium‐oxide layer, particularly that of top electrodes, is not yet fully understood even in the simplest capacitor geometry. In this study, the La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 (LSMO/HZO) epitaxial heterostructure is utilized as a model system to conduct a systematic comparative study on ferroelectricity between the LSMO/HZO (H‐LS) bilayer and LSMO/HZO/LSMO (LS‐H‐LS) trilayer samples. In comparison to the H‐LS sample, the LS‐H‐LS sample exhibits a more uniform polar domain configuration and larger ferroelectric polarization. Moreover, the LS‐H‐LS sample exhibits significant improvements in leakage, endurance, and retention. These substantial enhancements in ferroelectricity are likely due to interfacial stress imposed by the LSMO capping layer and its capacity to accommodate extra oxygen vacancies. These results underscore the pivotal role of oxide‐based top electrodes in determining the ferroelectricity of hafnium‐oxide‐based heterostructures, providing crucial insights for optimizing the performance of innovative ferroelectric devices.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Anhui Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Hefei Science Center, Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3