Affiliation:
1. School of Electronic Engineering Heilongjiang University Harbin 150080 P. R. China
Abstract
AbstractMost current resistive memory has the problems of high and unstable threshold voltages and high device misread rates caused by low current switching ratios. To address these problems, an Al/poly(methyl methacrylate) (PMMA)/silkworm hemolymph:gold nanoparticles/PMMA/indium tin oxide memory device is fabricated by adding PMMA layers above and below the active layer. The device not only has stable bipolar switching characteristics with a high ON/OFF current ratio but also has a lower and more stable threshold voltage. Potentiation, depression, and spike‐time‐dependent plasticity at biological synapses are realized using this device. The device is successfully fabricated on a flexible substrate, and the device can still maintain a stable working state after 104 bending cycles. This research opens a new door for the future realization of artificial synapses in neural network hardware.
Funder
National Natural Science Foundation of China
Subject
Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献