High Gain Graphene Based Hot Electron Transistor with Record High Saturated Output Current Density

Author:

Strobel Carsten1ORCID,Chavarin Carlos A.2ORCID,Knaut Martin1ORCID,Völkel Sandra1,Albert Matthias1,Hiess Andre1ORCID,Max Benjamin1,Wenger Christian23ORCID,Kirchner Robert4ORCID,Mikolajick Thomas1ORCID

Affiliation:

1. Institute of Semiconductors and Microsystems, Chair of Nanoelectronics Technische Universität Dresden Nöthnitzer Straße 64 01187 Dresden Germany

2. IHP Leibniz‐Institut für innovative Mikroelektronik Im Technologiepark 25 15236 Frankfurt (Oder) Germany

3. BTU Cottbus‐Senftenberg Platz der Deutschen Einheit 1 03046 Cottbus Germany

4. Center for Advancing Electronics Technische Universität Dresden Helmholtzstr. 18 01069 Dresden Germany

Abstract

AbstractHot electron transistors (HETs) represent an exciting new device for integration into semiconductor technology, holding the promise of high‐frequency electronics beyond the limits of SiGe bipolar hetero transistors. With the exploration of 2D materials such as graphene and new device architectures, hot electron transistors have the potential to revolutionize the landscape of modern electronics. This study highlights a novel hot electron transistor structure with a record output current density of 800 A cm2 and a high current gain α, fabricated using a scalable fabrication approach. The hot electron transistor structure comprises 2D hexagonal boron nitride and graphene layers wet transferred to a germanium substrate. The combination of these materials results in exceptional performance, particularly in terms of the highly saturated output current density. The scalable fabrication scheme used to produce the hot electron transistor opens up opportunities for large‐scale manufacturing. This breakthrough in hot electron transistor technology holds promise for advanced electronic applications, offering high current capabilities in a practical and manufacturable device.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3