High Performance of Normally‐On and Normally‐Off Devices with Highly Boron‐Doped Source and Drain on H‐Terminated Polycrystalline Diamond

Author:

Zhu Xiaohua12,Shao Siwu1,Chan Siyi1,Tu Juping1,Ota Kosuke2,Huang Yabo1,An Kang1,Chen Liangxian1,Wei Junjun1,Liu Jinlong1,Li Chengming1ORCID,Kawarada Hiroshi23

Affiliation:

1. Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 P. R. China

2. Faculty of Science and Engineering Waseda University Tokyo 169‐8555 Japan

3. Kagami Memorial Laboratory for Materials Science and Technology Waseda University Tokyo 169‐0051 Japan

Abstract

AbstractDiamond exhibits large application potential in the field of power electronics, owing to its excellent and desirable electronic properties. However, the main obstacles to its development originate from the small‐sized single‐crystal wafers and the instability of the electrical conductivity. This work presents a metal‐oxide‐semiconductor field‐effect transistor (MOSFET) on a diamond substrate derived from a five‐inch (110) highly preferred polycrystalline diamond film. The MOSFETs with excellent performance are fabricated by combining an H‐terminated channel and an epitaxially grown boron‐doped layer as the source/drain contacts of the diamond devices. According to the electrical statistical results of ≈110 devices on the polycrystalline diamond substrate, 44% of devices show normally‐off operation with a maximum current density of 400 mA mm−1, while 56% of devices demonstrate normally‐on operation with a maximum current density of 525 mA mm−1. The normally‐off characteristics are more related to the higher amounts of nitrogen concentration than the grain boundaries. The stable boron‐doped source and drain provide a high concentration of holes, which facilitate transport in the surface p‐type channel induced by the H‐termination. The characteristics of the MOSFETs are inspiring for the fabrication of complementary inverter circuits on large diamond wafers.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3