Affiliation:
1. Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 P. R. China
2. Faculty of Science and Engineering Waseda University Tokyo 169‐8555 Japan
3. Kagami Memorial Laboratory for Materials Science and Technology Waseda University Tokyo 169‐0051 Japan
Abstract
AbstractDiamond exhibits large application potential in the field of power electronics, owing to its excellent and desirable electronic properties. However, the main obstacles to its development originate from the small‐sized single‐crystal wafers and the instability of the electrical conductivity. This work presents a metal‐oxide‐semiconductor field‐effect transistor (MOSFET) on a diamond substrate derived from a five‐inch (110) highly preferred polycrystalline diamond film. The MOSFETs with excellent performance are fabricated by combining an H‐terminated channel and an epitaxially grown boron‐doped layer as the source/drain contacts of the diamond devices. According to the electrical statistical results of ≈110 devices on the polycrystalline diamond substrate, 44% of devices show normally‐off operation with a maximum current density of 400 mA mm−1, while 56% of devices demonstrate normally‐on operation with a maximum current density of 525 mA mm−1. The normally‐off characteristics are more related to the higher amounts of nitrogen concentration than the grain boundaries. The stable boron‐doped source and drain provide a high concentration of holes, which facilitate transport in the surface p‐type channel induced by the H‐termination. The characteristics of the MOSFETs are inspiring for the fabrication of complementary inverter circuits on large diamond wafers.
Funder
Natural Science Foundation of Beijing Municipality
Subject
Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献