Experimental Investigation of Superconductivity in PdSSe Under High Pressure

Author:

Liu Sirui1,Zhao Xingbin1,Song Hao1,Lv Xindeng1,Chen Jiajun1,Dan Yaqian1,Huang Yanping1ORCID,Cui Tian12

Affiliation:

1. Institute of High Pressure Physics School of Physical Science and Technology Ningbo University Ningbo 315211 China

2. State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China

Abstract

AbstractAnalysis of the superconducting properties of transition metal dichalcogenides (TMDs) under high pressures offers valuable insights to guide the design and synthesis of high‐performance superconducting materials. Herein, the effect of pressure is investigated on the superconductivity of a typical van der Waals layered TMDs material, PdSSe, by measuring its transport properties. After initially increased pressure, superconductivity emerges at 10.2 GPa, with a critical superconducting temperature (Tc) of ≈5.1 K, accompanied by the diminishing charge density wave (CDW) that is originally strengthening. Then, the Tc gradually increases with increasing pressure, reaching 12.1 K at the maximum pressure. The study provides experimental evidence for the superconductivity of PdSSe, and to the best of the knowledge, this is the first report on the observation of amplified CDW phenomena under increasing pressure in nonmagnetic TMDs. The abnormal enhancement of CDW transition temperature at low pressure is consistent with the upward trend of resistance, which is related to the electron–electron interaction. Moreover, synchrotron X‐ray diffraction experiments reveal two additional structural phase transitions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3