Band Alignment Engineering in 2D Ferroelectric Van der Waals Heterostructures for All‐In‐One Optoelectronic Architecture

Author:

Lu Yanan1,Xie Dabao1,Zhang Congmin1,Cao Dan2,Chen Xiaoshuang3,Shu Haibo1ORCID

Affiliation:

1. College of Optical and Electronic Technology China Jiliang University Hangzhou 310018 China

2. College of Science China Jiliang University Hangzhou 310018 China

3. State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Science Shanghai 200083 China

Abstract

Abstract2D van der Waals (vdW) heterostructures consisting of vertically stacking atomically thin semiconductors with different band structures provide a flexible platform to design integrated electronic and optoelectronic devices with multi‐functionalities. However, the realization of device multifunctionality requires the heterostructures with tunable band alignments. Here an efficient strategy is proposed by constructing 2D vdW ferroelectric semiconductor heterostructures composed of atomically thin ferroelectrics and semiconductors to achieve this goal. These calculated results indicate that the local built‐in electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the heterostructures, leading to 36 potential band‐alignment transition pathways. Using SnS/In2Se3 vdW heterostructure as a prototype example, a reversible switching from high‐resistance to low‐resistance state is demonstrated by the band‐alignment transition from type‐II to type‐III driven by ferroelecric polarization switching, consequently leading to giant tunneling electroresistance (TER) ratio as high as 1012%. Moreover, the heterostructure with the momentum‐space matching band structure and in‐plane anisotropy exhibits broadband photoresponse from near‐infrared to ultraviolet regions and excellent polarization sensitivity with the dichroic ratio up to 10.3. The ferroelectric polarization‐dependent conductance state and photoresponse in the heterostructures make them large potential for the realization of all‐in‐one optoelectronic architecture in artificial vision system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3