Affiliation:
1. Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
2. College of Electronics and Information Engineering Shenzhen University Shenzhen 518060 P. R. China
3. Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China
Abstract
AbstractThe essential step for developing neuromorphic systems is to construct more biorealistic elementary devices with rich spatiotemporal dynamics to exhibit highly separable responses in dynamic environmental circumstances. Unlike transistor‐based devices and circuits with zeroth‐order complexity, memristors intrinsically express some simple biomimetic functions. However, with only two‐terminal structure, precise control of operation principles to ensure large dynamic space, improved linearity and symmetry, multimodal operation as well as high‐order complexity is hard to achieve in a traditional memristor owing to its limited degree of freedom. Therefore, multiterminal memristors including both concrete terminals and virtual terminals (light, pressure, gas, ferroelectric polarity, etc.) have been proposed to obtain precise modulation of memristive characteristics. This review focuses on the recent progress in multiterminal memristors and their neuromorphic applications. The operation principle, application of multiterminal memristor on neuromorphic computing in different scenarios, existing challenges and future prospects are discussed.
Funder
National Natural Science Foundation of China
Subject
Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献