Hydrogel‐Based Artificial Synapses for Sustainable Neuromorphic Electronics

Author:

Yan Jiongyi1ORCID,Armstrong James P. K.2,Scarpa Fabrizio3,Perriman Adam W.145ORCID

Affiliation:

1. School of Cellular and Molecular Medicine University of Bristol Bristol BS8 1TD UK

2. Department of Translational Health Sciences Bristol Medical School University of Bristol Bristol BS1 3NY UK

3. Bristol Composites Institute School of Civil, Aerospace and Design Engineering (CADE) University of Bristol University Walk Bristol BS8 1TR UK

4. Research School of Chemistry Australian National University Canberra Australian Capital Territory 2601 Australia

5. John Curtin School of Medical Research Australian National University Canberra Australian Capital Territory 2601 Australia

Abstract

AbstractHydrogels find widespread applications in biomedicine because of their outstanding biocompatibility, biodegradability, and tunable material properties. Hydrogels can be chemically functionalized or reinforced to respond to physical or chemical stimulation, which opens up new possibilities in the emerging field of intelligent bioelectronics. Here, the state‐of‐the‐art in functional hydrogel‐based transistors and memristors is reviewed as potential artificial synapses. Within these systems, hydrogels can serve as semisolid dielectric electrolytes in transistors and as switching layers in memristors. These synaptic devices with volatile and non‐volatile resistive switching show good adaptability to external stimuli for short‐term and long‐term synaptic memory effects, some of which are integrated into synaptic arrays as artificial neurons; although, there are discrepancies in switching performance and efficacy. By comparing different hydrogels and their respective properties, an outlook is provided on a new range of biocompatible, environment‐friendly, and sustainable neuromorphic hardware. How potential energy‐efficient information storage and processing can be achieved using artificial neural networks with brain‐inspired architecture for neuromorphic computing is described. The development of hydrogel‐based artificial synapses can significantly impact the fields of neuromorphic bionics, biometrics, and biosensing.

Funder

Medical Research Council

FP7 Ideas: European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3