Structural Engineering of H0.5Z0.5O2‐Based Ferroelectric Tunneling Junction for Fast‐Speed and Low‐Power Artificial Synapses

Author:

Cao Yuanyuan1,Liu Yilun1,Yang Yafen1,Li Qingxuan1,Zhang Tianbao1,Ji Li1,Zhu Hao1,Chen Lin1ORCID,Sun Qingqing1,Zhang David Wei1

Affiliation:

1. State Key Laboratory of ASIC and System School of Microelectronics Fudan University No. 220 Handan Road Shanghai 200433 P. R. China

Abstract

AbstractAdvanced synaptic devices capable of neuromorphic data processing are widely studied as the building block in the next‐generation computing architecture for artificial intelligence applications. Due to its fast speed, low power, and excellent complementary metal‐oxide‐semiconductor (CMOS) compatibility, Zr‐doped HfO2 (HZO)‐based ferroelectric tunnel junction (FTJ) are promising candidates as a new type of non‐volatile memory for neuromorphic device applications. Here, an experimental approach is reported to enhance the tunneling efficiency and the electrical performance by engineering the dielectric stack of the FTJ device. By sandwiching the HZO ferroelectric layer with ZrO2 and Al2O3 layers, the FTJ tunneling current is greatly increased with lowered barrier, larger remnant polarization (Pr), and tunneling electrical resistance ratio as well as suppressed leakage current have been achieved. The optimized FTJ devices are further implemented emulating synaptic functions with demonstrated short/long‐term synaptic plasticity and spike‐timing‐dependent plasticity behaviors. Such engineering in HZO‐based FTJ devices can be promising and instructive for the realization of future ultra‐low‐power and CMOS‐compatible neuromorphic devices and systems.

Funder

Science and Technology Commission of Shanghai Municipality

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3