Tuning the Electronic Characteristics of Monolayer MoS2‐Based Transistors by Ion Irradiation: The Role of the Substrate

Author:

Fekri Zahra1ORCID,Chava Phanish1,Hlawacek Gregor1,Ghorbani‐Asl Mahdi1,Kretschmer Silvan1,Awan Wajid1,Mootheri Vivek1,Venanzi Tommaso1,Sycheva Natalia1,George Antony2,Turchanin Andrey2,Watanabe Kenji3,Taniguchi Takashi4,Helm Manfred15,Krasheninnikov Arkady V.1,Erbe Artur15

Affiliation:

1. Helmholtz‐Zentrum Dresden‐Rossendorf 01328 Dresden Germany

2. Friedrich Schiller University Jena D‐07743 Jena Germany

3. Research Center for Electronic and Optical Materials National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

4. Research Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

5. Technische Universität Dresden 01062 Dresden Germany

Abstract

AbstractThis study explores defect engineering in 2D materials using ion beam irradiation to modify the electrical and optical properties with potential in advancing quantum electronics and photonics. Helium and neon ions ranging from 5 to 7.5 keV are employed to manipulate charge transport in monolayer molybdenum disulfide (MoS2). In situ electrical characterization occurs without vacuum breakage post‐irradiation. Raman and photoluminescence spectroscopy quantify ion irradiation's impact on MoS2. Small doses of helium ion irradiation enhance monolayer MoS2 conductivity in field‐effect transistor geometry by inducing doping and substrate charging. Findings reveal a strong correlation between the electrical properties of MoS2 and the primary ion used, as well as the substrate on which the irradiation occurred. Using hexagonal boron nitride (h‐BN) as a buffer layer between MoS2 flake and SiO2 substrate yields distinct alterations in electrical behavior subsequent to ion irradiation compared to the MoS2 layer directly interfacing with SiO2. Molecular dynamics simulations and density functional theory provide insight into experimental results, emphasizing substrate influence on measured electrical properties post‐ion irradiation.

Funder

Helmholtz-Gemeinschaft

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3