Electrolyte Gated Synaptic Transistor based on an Ultra‐Thin Film of La0.7Sr0.3MnO3

Author:

López Alejandro12,Tornos Javier13,Peralta Andrea1,Barbero Isabel1,Fernandez‐Canizares Francisco14,Sanchez‐Santolino Gabriel14,Varela María14,Rivera Alberto13,Camarero Julio25,León Carlos13,Santamaría Jacobo13,Romera Miguel13ORCID

Affiliation:

1. GFMC Dept. Física de Materiales Facultad de Física Universidad Complutense de Madrid Madrid 28040 Spain

2. IMDEA Nanociencia C/Faraday 9 Madrid 28049 Spain

3. Unidad Asociada UCM/CSIC Laboratorio de Heteroestructuras con Aplicación en Espintrónica Madrid 28049 Spain

4. Instituto Pluridisciplinar Universidad Complutense de Madrid Madrid 28040 Spain

5. Departamento de Física de la Materia Condensada and Departamento de Física Aplicada IFIMAC and Instituto Nicolás Cabrera Universidad Autónoma de Madrid Madrid 28049 Spain

Abstract

AbstractDeveloping electronic devices capable of reproducing synaptic functionality is essential in the context of implementing fast, low‐energy consumption neuromorphic computing systems. Hybrid ionic/electronic three‐terminal synaptic transistors are promising as efficient artificial synapses since they can process information and learn simultaneously. In this work, an electrolyte‐gated synaptic transistor is reported based on an ultra‐thin epitaxial La0.7Sr0.3MnO3 (LSMO) film, a half‐metallic system close to a metal‐insulator transition. The dynamic control of oxygen composition of the manganite ultra‐thin film with voltage pulses applied through the gate terminal allows reversible modulation of its electronic properties in a non‐volatile manner. The conductance modulation can be finely tuned with the amplitude, duration, and number of gating pulses, providing different alternatives to gradually update the synaptic weights. The transistor implements essential synaptic features such as excitatory postsynaptic potential, paired‐pulse facilitation, long‐term potentiation/depression of synaptic weights, and spike‐time‐dependent plasticity. These results constitute an important step toward the development of neuromorphic computing devices leveraging the tunable electronic properties of correlated oxides, and pave the way toward enhancing future device functionalities by exploiting the magnetic (spin) degree of freedom of the half metallic transistor channel.

Funder

Comunidad de Madrid

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3