Affiliation:
1. Department of Physics and Memory and Catalyst Research Center Hankuk University of Foreign Studies Yongin 17035 South Korea
2. Department of Material Science and Engineering and Research Institute of Advanced Materials Seoul National University Seoul 151‐747 South Korea
3. Department of Physics and Astronomy and Institute of Applied Physics Seoul National University Seoul 08826 South Korea
Abstract
AbstractA novel class of transition metal oxides, capable of reversible topotactic phase transition between the oxygen‐deficient brownmillerite and oxygen‐rich perovskite, has emerged as a promising material for memristive and magnetoelectric devices. However, the absence of a local oxygen source in the device structure necessitates an oxygen exchange process between the surrounding atmosphere and the switching layer during operation, which can lead to unreliable device performance. In this study, graphene quantum dots (GQDs) are introduced into a SrFe0.5Co0.5Ox memristive device as an oxygen reservoir for the nanoscale topotactic redox process. The SrFe0.5Co0.5Ox memristive devices with GQDs exhibit reliable resistive switching performance compared to SrFe0.5Co0.5Ox devices without GQDs. To understand the effect of GQDs on the device structure, a pulse endurance test is carried out in a high vacuum. The devices with GQDs show rather good endurance behavior, while devices without GQDs exhibit endurance failure. These results provide a deeper understanding of the potential use of GQDs in enhancing the performance of SrFe0.5Co0.5Ox memristive devices, with implications for tuning nanoscale topotactic phase transition for multi‐functional properties.
Funder
National Research Foundation of Korea
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献