Deep learning for sentiment analysis: A survey
Author:
Affiliation:
1. Linkedin CorporationSunnyvaleCAUSA
2. University of Illinois at ChicagoChicagoILUSA
Funder
National Science Foundation
Publisher
Wiley
Subject
General Computer Science
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1253
Reference149 articles.
1. Sentiment Analysis
2. Abdul‐Mageed M. &Ungar L. (2017). EmoNet: Fine‐grained emotion detection with gated recurrent neural networks. InProceedings of the Annual Meeting of the Association for Computational Linguistics (ACL 2017).
3. Akhtar M. S. Kumar A. Ekbal A. &Bhattacharyya P. (2016). A hybrid deep learning architecture for sentiment analysis. InProceedings of the International Conference on Computational Linguistics (COLING 2016).
4. Akhtar M. S. Kumar A. Ghosal D. Ekbal A. &Bhattacharyya P. (2017). A multilayer perceptron based ensemble technique for fine‐grained financial sentiment analysis. InProceedings of the Conference on Empirical Methods on Natural Language Processing (EMNLP 2017).
5. Augenstein I. Rocktäschel T. Vlachos A. Bontcheva K. (2016). Stance detection with bidirectional conditional encoding. InProceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2016).
Cited by 1048 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Question-answering framework for building codes using fine-tuned and distilled pre-trained transformer models;Automation in Construction;2024-12
2. Aspect extraction with enriching word representation and post-processing rules;Expert Systems with Applications;2024-10
3. Monitoring Sentiment Through Natural Language Processing;SPE International Health, Safety, Environment and Sustainability Conference and Exhibition;2024-09-10
4. Deep Learning in Streamlining Students by English Proficiency to Optimize Language Learning;Data Analytics and Artificial Intelligence;2024-09-06
5. OM Forum—The Best of Both Worlds: Machine Learning and Behavioral Science in Operations Management;Manufacturing & Service Operations Management;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3