Deep Learning in Streamlining Students by English Proficiency to Optimize Language Learning

Author:

Ramila Gandhi N1,Pandiammal P2,Mary Lowrencia C3,Martin Nivetha3

Affiliation:

1. PSNA College of Engineering and Technology (Autonomous), Dindigul, Tamil Nadu, India

2. G.T.N Arts College (Autonomous), Dindigul, Tamil Nadu, India

3. Arul Anandar College (Autonomous), Karumathur, Madurai, Tamil Nadu, India.

Abstract

Communication through English language is an essential and anticipated attribute of the learners in modern times. This article discourses on the modalities of applying deep learning techniques to streamline students based on their English proficiency, aiming to optimize language learning outcomes. The neural network-based modelling framework encompasses varied features and it is trained on diverse datasets. This research unveils the potential of artificial intelligence in tailoring language learning by paying special attention of focused learner groups. The efficacy of the proposed model is measured using certain standard performance metrics. This research work facilitates in extending this neural network model to other decision-making applications.

Publisher

REST Publisher

Reference18 articles.

1. Chi, M., & Koedinger, K. R. (2020). Analyzing learning behavior using intelligent tutoring systems: A tutorial. Artificial Intelligence in Education: 21st International Conference, 12-21.

2. Hu, Y., Li, Y., & Zhang, J. (2021). A personalized learning path recommendation model based on a knowledge graph. Applied Sciences, 11(5), 2358.

3. Ke, Z., & Ng, H. T. (2019). Automated essay scoring: A survey of the state of the art. International Journal of Artificial Intelligence in Education, 29(3), 291-324.

4. Koivisto, J., & Hamari, J. (2019). The rise of motivational information systems: A review of gamification research. International Journal of Information Management, 45, 191-210.

5. Kumar, A., & Sharma, P. (2020). Personalized learning using deep learning techniques. Proceedings of the 2020 International Conference on Intelligent Computing and Control Systems (ICICCS), 678-683.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3