A CIELAB fusion‐based generative adversarial network for reliable sand–dust removal in open‐pit mines

Author:

Li Xudong12,Liu Chong234,Sun Yangyang1,Li Wujie1,Li Jingmin234

Affiliation:

1. School of Mechanical Engineering Dalian University of Technology Dalian China

2. Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China

3. Key Laboratory for Digital Design and Intelligent Equipment Technology of Liaoning Province Dalian University of Technology Dalian China

4. Key Laboratory for Precision and Non‐traditional Machining Technology of Ministry of Education Dalian University of Technology Dalian China

Abstract

AbstractIntelligent electric shovels are being developed for intelligent mining in open‐pit mines. Complex environment detection and target recognition based on image recognition technology are prerequisites for achieving intelligent electric shovel operation. However, there is a large amount of sand–dust in open‐pit mines, which can lead to low visibility and color shift in the environment during data collection, resulting in low‐quality images. The images collected for environmental perception in sand–dust environment can seriously affect the target detection and scene segmentation capabilities of intelligent electric shovels. Therefore, developing an effective image processing algorithm to solve these problems and improve the perception ability of intelligent electric shovels has become crucial. At present, methods based on deep learning have achieved good results in image dehazing, and have a certain correlation in image sand–dust removal. However, deep learning heavily relies on data sets, but existing data sets are concentrated in haze environments, with significant gaps in the data set of sand–dust images, especially in open‐pit mining scenes. Another bottleneck is the limited performance associated with traditional methods when removing sand–dust from images, such as image distortion and blurring. To address the aforementioned issues, a method for generating sand–dust image data based on atmospheric physical models and CIELAB color space features is proposed. The impact mechanism of sand–dust on images was analyzed through atmospheric physical models, and the formation of sand–dust images was divided into two parts: blurring and color deviation. We studied the blurring and color deviation effect generation theories based on atmospheric physical models and CIELAB color space, and designed a two‐stage sand–dust image generation method. We also constructed an open‐pit mine sand–dust data set in a real mining environment. Last but not least, this article takes generative adversarial network (GAN) as the research foundation and focuses on the formation mechanism of sand–dust image effects. The CIELAB color features are fused with the discriminator of GAN as basic priors and additional constraints to improve the discrimination effect. By combining the three feature components of CIELAB color space and comparing the algorithm performance, a feature fusion scheme is determined. The results show that the proposed method can generate clear and realistic images well, which helps to improve the performance of target detection and scene segmentation tasks in heavy sand–dust open‐pit mines.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3