Response surface methodology use in construction of polianiline‐coated carbon paste electrode–based biosensor: Modification and characterization

Author:

Yağız Esra1,Ozyilmaz Gul1ORCID,Ozyilmaz Ali Tuncay1

Affiliation:

1. Department of Chemistry, Faculty of Arts & Sciences University of Hatay Mustafa Kemal Hatay Turkey

Abstract

AbstractIn this study, the effect of amperometric glucose biosensor construction and using conditions on the current response was investigated in detail applying experimental design. Polyaniline (PANI) was synthesized on the carbon paste electrode (CPE) surface using the cyclic voltammetry technique in sodium oxalate (NaOx) electrolyte medium, and an amperometric biosensor was constructed by immobilizing glucose oxidase (GOD). Biosensor preparation (aniline, GOD and NaOx concentrations, and scan rate) and operating conditions (pH and applied potential) were optimized by Box–Behnken and optimal designs, respectively, via State Ease Design Expert 7.0.1.1 software. ANOVA analyses showed that among the biosensor preparation parameters, the NaOx concentration has the highest effect on the current measured in the presence of glucose, whereas in the optimization of pH and potential parameters applied in current measurement studies, it has been revealed that pH has a very high effect on the measured current. Several compounds, such as MWCNT, two different ionic liquids and two different organic molecules were added to carbon paste, and, among them, 2‐cyanoethylpyrrole (CPy) enhanced the efficacy highly, most probably due to its polymerization in the paste and increasing the electron transfer rate of the CPE. Sucrose‐ and lactose‐sensitive biosensors were also constructed by co‐immobilizing GOD with invertase (INV) or β‐galactosidase, respectively, onto modified CPE, and sensitivities to their substrates were shown by cyclic voltammetry and impedance analysis. CPy modification caused an increase in the current values, and also Imax/KM values increased approximately 11.8, 7.83, and 2.56 times for glucose‐, sucrose‐, and lactose‐sensitive CPEs, respectively.

Publisher

Wiley

Subject

Process Chemistry and Technology,Drug Discovery,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,General Medicine,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3