Affiliation:
1. Hasanuddin University Department of Physics 90245 Makassar Indonesia
2. Indonesian Institute of Sciences (LIPI) Research Center for Physics 15314 Puspiptek, Banten Indonesia
Abstract
AbstractMagnetic nanoparticles made from organic and inorganic materials have gained significant technological progress and are widely applied in biomedicine, including magnetic resonance imaging, targeted drug delivery systems, biosensors, hyperthermia, and tissue engineering. The most reported synthesis methods include hydrothermal, sol‐gel, laser ablation, microemulsion, and ball‐milling methods. The synthesis parameters have a strong correlation with essential properties, such as phase, size, and surface morphology, which greatly influence the macroscopic properties and potential applications of the particles. Different preparation methods result in magnetic nanoparticles with varying characteristics, and the appropriate method can be chosen based on the requirements of the specific application. Two effective methods for synthesizing magnetic nanoparticles are coprecipitation and hydrothermal method because the preparation is relatively simple with low energy consumption, and uniform and homogeneous crystals are obtained.
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献