New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell Fe3O4-SA Nanoparticle Synthesis

Author:

Niculescu Adelina-Gabriela12ORCID,Munteanu (Mihaiescu) Oana Maria1,Bîrcă Alexandra Cătălina1,Moroșan Alina3ORCID,Purcăreanu Bogdan14ORCID,Vasile Bogdan Ștefan1ORCID,Istrati Daniela3ORCID,Mihaiescu Dan Eduard3ORCID,Hadibarata Tony15ORCID,Grumezescu Alexandru Mihai12ORCID

Affiliation:

1. Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania

2. Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania

3. Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania

4. BIOTEHNOS S.A., Gorunului Rue, No. 3-5, 075100 Otopeni, Romania

5. Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia

Abstract

This study’s main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of Fe3O4 cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate. Synthesis optimization was also performed, employing the variation in the reagents ratio to highlight the concentration domains in which magnetite is mainly produced, the formation of nanoparticles with different diameters and low polydispersity, and the stability of colloidal dispersions in water. The obtained materials were further characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM), with the experimental results confirming the production of salicylic acid-functionalized iron oxide (Fe3O4-SA) nanoparticles adapted for different further applications.

Funder

European Union

Publisher

MDPI AG

Reference70 articles.

1. Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., and Zitka, O. (2017). Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials, 7.

2. Niculescu, A.-G., Mihaiescu, B., Mihaiescu, D.E., Hadibarata, T., and Grumezescu, A.M. (2024). An Updated Overview of Magnetic Composites for Water Decontamination. Polymers, 16.

3. Rani, K., Singh, J., Jangra, A., Kumar, J., Kumar, P., Kumar, S., Singh, D., and Kumar, R. (2023). Kinetics and isotherm investigations on the improved adsorption of the antibiotic moxifloxacin from aqueous solution utilizing agar coated magnetite nanoparticles. Biointerface Res. Appl. Chem., 13.

4. Mostafapour, F.K., Miri, A., Khatibi, A., Balarak, D., and Kyzas, G.Z. (2023). Survey of Fe3O4 Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate for Removal P-Cresol and Pyrocatechol from Aqueous Solutions. Biointerface Res. Appl. Chem., 13.

5. Nguyen, M.D., Tran, H.-V., Xu, S., and Lee, T.R. (2021). Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci., 11.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3