Machine Learning Applied to Predict Key Petroleum Crude Oil Constituents

Author:

Dhankar Shreshtha1ORCID,Sharma Deepika1ORCID,Mohanta Hare Krishna1,Sande Priya Christina1ORCID

Affiliation:

1. Birla Institute of Technology and Science Department of Chemical Engineering Pilani campus 333031 Pilani Rajasthan India

Abstract

AbstractSulfur compounds are the most important inorganic constituents of petroleum and require to be estimated beforehand because of their corrosive nature and other processing anomalies during crude oil processing. Paraffins, naphthene, and aromatics form the bulk of crude oil. Machine learning (ML) predictions of these constituents were made by training the ML model with a diverse industrial data set of 515 oils. The XGBoost model gave an excellent R2 in the range 0.88–0.99 for the bulk compounds. R2 for sulfur was in the modest range of 0.45–0.6, which improved significantly to 0.8 for additional inputs. ML applicability was thereby found to depend on the nature of the constituent. This work furthers ML‐based predictions, with the incentive of reducing expensive spectroscopic analytical methods.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Reference40 articles.

1. Y.Tao inICMLCA 2021 – 2nd Int. Conf. on Machine Learning and Computer Application Shenyang China December2021.

2. Correlations for Pour Point and Cloud Point of middle and heavy distillates using density and distillation temperatures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3