Pour Point Prediction Method for Mixed Crude Oil Based on Ensemble Machine Learning Models

Author:

Duan Jimiao1,Kou Zhi1,Liu Huishu1,Lin Keyu1,He Sichen1ORCID,Chen Shiming1

Affiliation:

1. Army Logistics Academy, Chongqing 401331, China

Abstract

Pipelines are the most common way to transport crude oil. The crude oil developed from different fields is mixed first and then transported. The pour point of mixed crude oil is very important for pipeline schemes and ensuring the safe, efficient, and flexible operation of the pipeline. An integrated machine learning model based on XGBoost is identified as optimal to predict the pour point of mixed crude oil by comprehensive comparison among six different types of machine learning models: multiple linear regression, random forest, support vector machine, LightGBM, backpropagation neural network, and XGBoost. A mixed crude oil pour point prediction model with strong engineering adaptability is proposed, focusing on enhancing the flexibility of machine learning model inputs (using density and viscosity instead of component crude oil pour points) and addressing challenges such as data volume and input missing in engineering scenarios. With the inputs of pour point Tg, density ρ, viscosity μ, and ratio Xi in component oils, the mean absolute error of the model prediction estimations after training with 8912 data is 1.12 °C, when the pour point Tg of the component crude oil is missing, the mean absolute error is 1.93 °C and the percentage of the predicted absolute error within 2 °C is 88.0%. This study can provide support for the intelligent control of flow properties of pipeline transport mixed oil.

Funder

the Natural Science Foundation of China

a Major Project of the Science and Technology Research Program of the Chongqing Education Commission of China

Publisher

MDPI AG

Reference26 articles.

1. Review on the gelation of wax and pour point depressant in crude oil multiphase system;Xu;Int. J. Mod. Phys. B,2021

2. Advances in rheology and flow assurance studies of waxy crude;Jinjun;Pet. Sci.,2013

3. Adaptive XGBOOST Hyper Tuned Meta Classifier for Prediction of Churn Customers;Srikanth;Intell. Autom. Soft Comput.,2022

4. Prediction of Viscosity Variation for Waxy Crude Oils Beneficiated by Pour Point Depressants During Pipelining;Li;Pet. Sci. Technol.,2005

5. Study on the Ordinary Temperature Transportation Process of Multi-blended Crude oil;Liu;Oil Gas Storage Transp.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3