Potential‐free sodium‐induced degradation of silicon heterojunction solar cells

Author:

Li Xiaodong12ORCID,Yang Yuhao1,Jiang Kai12,Huang Shenglei1ORCID,Zhao Wenjie1,Li Zhenfei1,Wang Guangyuan1,Han Anjun13ORCID,Yu Jian4ORCID,Li Dongdong5,Meng Fanying12,Zhang Liping12,Liu Zhengxin12,Liu Wenzhu12

Affiliation:

1. Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 201800 China

2. University of Chinese Academy of Sciences (UCAS) Shijingshan Beijing 100049 China

3. Science and Technology on Micro‐system Laboratory, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai China

4. Institute of Photovoltaics Southwest Petroleum University Chengdu 610500 China

5. The Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China

Abstract

AbstractSilicon‐based photovoltaic (PV) modules suffer from potential‐induced degradation (PID) caused by sodium (Na) permeation, which is present in large quantities in soda‐lime glass. Here, we report that Na atoms can decrease the performance of amorphous/crystalline silicon heterojunction (SHJ) solar cells without the help of a voltage bias. The three degradation stages are investigated in this work. First, H2O molecules open channels for Na transport in the transparent conductive oxide (TCO), while the device performance remains almost unchanged. Next, when Na atoms reach the boron‐doped hydrogenated amorphous silicon (p‐a‐Si:H), the field passivation is poisoned, leading to a great decline in the fill factor (FF), whereas the open‐circuit voltage (Voc) only slightly declines. Finally, Na atoms further diffuse into the intrinsic a‐Si:H layer and c‐Si surface, resulting in a substantial decrease in Voc. These findings have important implications for the installation of SHJ solar modules in Na‐abundant environments. As a feasible solution, we demonstrate that a compact SiO2 thin film can efficiently prevent H2O molecules from penetrating into the TCO layer and therefore guarantee a long‐term stable operation of SHJ solar cells.

Funder

Chengdu Science and Technology Program

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3