Affiliation:
1. Department of Radiology Technology, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
2. Department of Radiology, Faculty of Medicine Urmia University of Medical Science Urmia Iran
3. School of Mathematics, Physics and Computing University of Southern Queensland Springfield Australia
4. Department of Biomedical Engineering, School of Science and Technology SUSS University Singapore Singapore
5. Department of Biomedical Informatics and Medical Engineering Asia University Taichung Taiwan
Abstract
AbstractNoise corrupts ultrasound images and degrades spatial and contrast resolutions. Hence, it is challenging to characterize the lesions precisely using ultrasound images. The present study aims to evaluate 67 denoising filters and select the best one for ultrasound image denoising. Seven test images were synthesized to evaluate the performance of filters at three different noise levels. Eleven full‐reference quantitative image quality metrics (IQMs) were employed to evaluate the performance of the filters. A new filter evaluation method, Rank Analysis, was introduced and utilized at each noise level. The ten best filters with the smallest mean rank in all noise levels were defined for further analysis on real ultrasound images. The Rank Analysis was also employed for real ultrasound images, and filters were evaluated based on 14 IQMs (11 full‐reference and three no‐reference). Finally, the best filter was defined using the repeated measures analysis statistical test. According to the Rank Analysis results, the Spatial correlation (SCorr) filter obtained the best results with the mean rank scores±SD of 1 ± 0, which was significantly better than the other nine filters (p < 0.001). The second‐best results were achieved by three filters, Bitonic, most homogeneous neighborhood, and Lee diffusion (p < 0.05). We concluded that SCorr is the best filter for ultrasound image denoising. It can be used in the pre‐processing step before segmentation and diagnostic procedures. In addition, a new filter evaluation method, Rank Analysis, was introduced in this study, which is easy to use, fast, and provides reliable results. So, it can be used to evaluate newly developed filters in the future studies.
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献