Surface functionalization of naturally occurring silicate minerals infused hydrocarbon polymer matrix for ultra‐low dielectric performance at high frequency domain

Author:

Islam Md Zahidul1ORCID,Deb Hridam2ORCID,Hasan Md Khalid3ORCID,Rony Mahade Hasan2,Dong Yubing1ORCID,Fu Yaqin1ORCID

Affiliation:

1. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China

2. College of Textile Science and Engineering Zhejiang Sci‐Tech University Hangzhou China

3. School of Mechanical Engineering Hangzhou Dianzi University Hangzhou China

Abstract

AbstractThe expanding realm of high‐frequency electronics necessitates materials with exceptional attributes: notably, a low dielectric constant (Dk) to minimize signal propagation delays, high thermal conductivity for effective heat dissipation, higher breakdown strength, and robust mechanical properties to withstand demanding operational environments. While cycloolefin copolymers (COC) excel in electrical insulation, chemical resistance, and mechanical durability, their intrinsic slightly higher dielectric constant compared to other polymers, along with challenges such as poor dispersibility and low compatibility with nanoparticles, hinder their full potential in this domain. Considering these drawbacks, this study fabricated a series of COC/mica composites by integrating natural mica particles into the COC matrix via a CTAB‐assisted surface modification of mica to enhance dispersibility and mitigating particle aggregation through in‐situ mixing and hot‐press methods. The resultant composites demonstrate an outstanding ultra‐low Dk of 1.44, marking a significant decrease of over 36% compared to pristine COC with a Dk of 2.26, along with exceptionally low dielectric loss (δ) of 0.00013 at the frequency of 10 GHz, high dielectric breakdown strength ~49.40 kV/mm and enhanced thermal conductivity up to 0.88 W/(m K) at 40% mica loading. Additionally, the composites heightened mechanical performances like tensile strength 69 MPa at 6.5% elongation at break, impact strength up to ~17.9 kJ × m−2, and exceptional water resistance with absorption below 0.097%. These exceptional ultra‐low dielectric performance with above mentioned properties can meet the stringent requirements of modern high‐frequency electronics packaging for next generation electronics development.Highlights Surface modification by CTAB enhanced homogeneous dispersibility of composites. Achieved ultra‐low dielectric constant and loss compared to pure COC. Thermal conductivity improved significantly with incorporation of mica. Unlocking high‐frequency applications potential with ultralow Dk performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3