Solar Cells on Multicrystalline Silicon Thin Films Converted from Low‐Cost Soda‐Lime Glass

Author:

Schall Ingrid1,Jia Guobin2ORCID,Brückner Uwe2,Gawlik Annett2ORCID,Strelow Christian3ORCID,Krügener Jan4ORCID,Tan Ditian5ORCID,Fahrbach Michael5ORCID,Ebbinghaus Stefan G.6ORCID,Plentz Jonathan2ORCID,Peiner Erwin5ORCID

Affiliation:

1. sameday media GmbH Am Flatthaus 13 29640 Schneverdingen Germany

2. Department Functional Interfaces Leibniz Institute of Photonic Technology (Leibniz IPHT) Albert‐Einstein‐Str. 9 07745 Jena Germany

3. Institut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg Germany

4. Institut für Materialien und Bauelemente der Elektronik (MBE) Leibniz Universität Hannover Schneiderberg 32 30167 Hannover Germany

5. Institut für Halbleitertechnik / Laboratory for Emerging Nanometrology (LENA) Technische Universität Braunschweig Hans‐Sommer‐Str. 66 38106 Braunschweig Germany

6. Institut für Chemie Martin‐Luther‐Universität Halle‐Wittenberg Kurt‐Mothes‐Str. 2 06120 Halle Germany

Abstract

AbstractFabrication and characterization of solar cells based on multicrystalline silicon (mc‐Si) thin films are described and synthesized from low‐cost soda‐lime glass (SLG). The aluminothermic redox reaction of the silicon oxide in SLG during low‐temperature annealing at 600 – 650 °C leads to an mc‐Si thin film with large grains of lateral dimensions in the millimeter range, and moderate p‐type conductivity with an average Al acceptor concentration between 5 × 1016 and 1.2 × 1017 cm−3 in the bulk. A residual composite layer of mainly alumina and unreacted Al forms beneath the mc‐Si thin film as the second product of the crystalline silicon synthesis (CSS) process, which can be used as rear contact in a vertical solar cell design. The mc‐Si absorber (≈10 µm) is thin enough that the diffusion length given by a minority carrier lifetime of ≈1 µs exceeds the path length to the top contact several times. Homojunction and heterojunction diodes have been fabricated on the mc‐Si thin films and show great potential of CSS for the realization of high‐performance solar cells.

Funder

Deutsche Bundesstiftung Umwelt

Niedersächsische Ministerium für Wissenschaft und Kultur

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3