Polyelectrolyte Complexation of Chitosan and WS2 Nanotubes

Author:

Magee Eimear1,Xie Fengwei2,Farris Stefano3,Dsouza Andrea4,Constantinidou Chrystala4,Zak Alla5,Tenne Reshef6,McNally Tony1ORCID

Affiliation:

1. International Institute for Nanocomposites Manufacturing (IINM) WMG University of Warwick Coventry CV4 7AL UK

2. School of Engineering Newcastle University Newcastle upon Tyne NE1 7RU UK

3. DeFENS Department of Food Environmental and Nutritional Science Packaging Division University of Milan Via Celoria 2 Milan 20133 Italy

4. Warwick Medical School University of Warwick Coventry CV4 7AL UK

5. Faculty of Sciences Holon Institute of Technology – HIT Holon 58102 Israel

6. Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 76100 Israel

Abstract

AbstractThe inclusion of tungsten disulphide nanotubes (WS2 NTs) in chitosan, plasticized with glycerol, facilitates the formation of a polyelectrolyte complex. The glycerol interrupts the intramolecular hydrogen bonding between chitosan chains allowing positively charged protonated amines of chitosan to form a complex with negatively charged oxygen ions chemisorbed to the tungsten atoms in defects. These interactions, with the unique mechanical and chemical properties of WS2 NTs, result in a chitosan film with superior properties relative to unfilled chitosan. Even at low WS2 NT loadings (≤1 wt%), the Young's modulus (E) increases by 59%, tensile strength (σ) by 40% and tensile toughness by 74%, compared to neat chitosan, without sacrificing ductility. Addition of highly dispersed WS2 NTs significantly improves the gas barrier properties of chitosan, with a 50% reduction in oxygen permeability, while the addition of both glycerol and WS2 NTs to chitosan effectively reduces the carbon dioxide permeability by 80% and the water vapor transmission rate by 90%. The intrinsic antimicrobial efficacy of chitosan against both Gram‐positive and Gram‐negative bacteria is enhanced on inclusion of WS2 NTs. Polyelectrolyte complexation of WS2 NTs and glycerol‐plasticized chitosan provides a cost‐effective, sustainable route to biodegradable films with desirable mechanical, gas barrier properties, and antimicrobial efficacy suitable for food packaging applications.

Funder

Weizmann Institute of Science

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3