Large‐Area Artificial van der Waals “Mille‐Feuille” Superlattices

Author:

Wei Hao1,Dubois Simon2,Brunnett Frederic1,Peiro Julian1,Godel Florian1,Carrétéro Cécile1,Panciera Federico3,Collin Sophie1,Bouamrane Fayçal1,Zatko Victor1,Galbiati Marta1,Carré Etienne1,Patriarche Gilles3,Petroff Frédéric1,Charlier Jean‐Christophe2,Martin Marie‐Blandine1,Dlubak Bruno1ORCID,Seneor Pierre1

Affiliation:

1. Laboratoire Albert Fert, CNRS, Thales Université Paris‐Saclay Palaiseau 91767 France

2. Institute of Condensed Matter and Nanosciences (IMCN) Université Catholique de Louvain Louvain‐la‐Neuve B‐1348 Belgium

3. Centre de Nanosciences et de Nanotechnologies Université Paris‐Saclay, CNRS Palaiseau 91120 France

Abstract

AbstractVan der Waals heterostructures are set as strong contenders for post‐CMOS quantum materials engineering. A major step for their systematic exploration and exploitation of technological component demonstrators resides in their eased large‐scale design. In this direction, the growth of artificial van der Waals 2D superlattices is presented here such as (MoS2/WS2)n, (WS2/WSe2)n, and (MoS2/WSe2)n with unit cells repetitions reaching n > 10. The fabrication of these materials is enabled by a fully automated in‐situ pulsed laser deposition (PLD) tool. This approach provides cm2 scale homogeneous superlattices with on‐demand material parameters tailoring (layer number, order, and composition). The process is rapid and simple compared to manual pickup exfoliation methods or to sequential transfers of single layers grown by techniques such as chemical vapor deposition, allowing a large repetition of the unit cells in a “mille‐feuille” cake configuration. The computational exploration of this family of superlattice materials sheds light on the potential for optoelectronic property design by shaping the band‐structure landscape while taking into account the influential effects induced by proximity. Overall, this large‐area approach is proposed as an entry point for the systematic design of complex van der Waals heterostructures.

Funder

Fédération Wallonie-Bruxelles

Agence Nationale de la Recherche

H2020 Future and Emerging Technologies

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3