Dual Coil Patterned Ultra‐Thin Silicon Film Enable by Double‐Sided Process

Author:

Son ChangHee1,Lee Sangyeop2,Ferreira Placid M.1,Kim Seok123ORCID

Affiliation:

1. Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

2. Department of Mechanical Engineering Pohang University of Science and Technology Pohang 37673 South Korea

3. Institute for Convergence Research and Education in Advanced Technology Yonsei University Seoul 03722 South Korea

Abstract

AbstractDouble‐sided microfabrication process on an ultra‐thin silicon film has rarely been attempted due to the challenges in terms of the preparation and handling of a thin film in spite of its promising fabrication potentials. Such a process allows for doubling the thin film device density or providing dual functionalities for a thin film depending on whether the front and back sides of a thin film are processed identically or distinctively. Here, a novel double‐sided thin film processing strategy is introduced by realizing a dual coil patterned ultra‐thin silicon film that is working as an actuating or energy harvesting system. Experimentally, a dual coil patterned thin film enabled using the introduced approach shows remarkably enhanced device performance when compared with a single coil patterned counterpart. Furthermore, a multiphysics simulation model is developed and the resultant modeling data validate the experimentally measured performance enhancement. Finally, the structural durability of the thin film upon cyclic loading is tested and its diverse vibration modes are investigated.

Funder

National Science Foundation

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3