Judicious Selection of Precursors with Suitable Chemical Valence State for Controlled Growth of Transition Metal Chalcogenides

Author:

Lan Shangui12,Zhang Zhixiang2,Hong Yukun23,She Yihong4,Pan Baojun2,Xu Yang25,Wang Peijian25ORCID

Affiliation:

1. School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310007 China

2. ZJU‐Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou Zhejiang 311215 China

3. College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China

4. State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China

5. School of Micro‐Nano Electronics Zhejiang University Hangzhou Zhejiang 311215 China

Abstract

AbstractTransition metal chalcogenides (TMCs) have attracted wide attentions as a class of promising material for both fundamental investigations and electronic applications due to their atomic thin thickness, dangling bond‐free surface, and excellent electronic properties. Specifically, TMCs show outstanding properties such as good thermal conductivity, robust mechanical properties, and extraordinary electronical characteristics, bestowing them utility in both fundamental research and applications. Recently, the development of post‐Moore electronics based on TMCs calls for their large‐size and single‐crystal growth. However, researchers about synthesis usually focus on controlling several growth parameters (such as growth temperature, flow rate, and time). Herein, it is reported that the chemical valence states of transition metal precursors play an important role in controlling the lateral size and crystal quality for TMCs. The study discusses the valence states‐dependent growth mechanism for WS2 and MoS2 from four factors: evaporation temperature, skipping of reaction steps, atomic binding energy of the precursors, and formation energy. In addition, the as‐grown WS2 and MoS2 nanoflakes exhibit good photoelectric response properties. For EuS, the growth results are obviously different by using EuBr3 and EuBr2 as precursors. The studies provide a unique perspective and also new knowledge to controllably grow large‐size and good crystal quality TMCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3