Nanoscale Size Control of Si Pyramid Texture for Perovskite/Si Tandem Solar Cells Enabling Solution‐Based Perovskite Top‐Cell Fabrication and Improved Si Bottom‐Cell Response

Author:

Li Yuqing12ORCID,Sai Hitoshi1ORCID,McDonald Calum1ORCID,Xu Zhihao1ORCID,Kurokawa Yasuyoshi2ORCID,Usami Noritaka2ORCID,Matsui Takuya12ORCID

Affiliation:

1. Renewable Energy Research Center National Institute of Advanced Industrial Science and Technology (AIST) 1‐1‐1 Umezono Tsukuba Ibaraki 305‐8568 Japan

2. Nagoya University‐Higashimaya Campus: Nagoya Daigaku Department of Materials Science and Engineering Furo‐cho, Chikusa‐ku Nagoya 464‐8601 Japan

Abstract

AbstractA monolithic perovskite/silicon tandem solar cell architecture is employed to surpass the single‐junction efficiency limit. Recently, there is an increasing need for the double‐sided textures in the Si bottom cell to be compatible with the solution‐processed perovskite top cell from an industrial perspective. Herein, a silver‐assisted alkaline etching method is applied to fabricate nanoscale Si pyramid textures, and the influence of varying pyramid size (400–900 nm) on the interface morphology and the performance of perovskite/Si tandem cells is investigated. It is demonstrated that electrical shunting starts to increase, and the open‐circuit voltage (VOC) decreases when the texture size exceeds the perovskite thickness (~500nm) due to the non‐uniform top‐cell formation on a rough Si surface. However, when the texture size is reduced to 400–500 nm, all spin‐coated perovskite top‐cell component layers exhibit an even form over the nanopyramid Si, resulting in a high VOC and an enhanced Si bottom cell current (≈1.0 mA cm−2) due to the suppressed reflectance at the top/bottom cell interface without using optical couplers. The double‐sided nanopyramid Si texture offers opportunities to increase tandem cell efficiency while reducing its production cost compared with the commonly used single‐sided textured Si.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3