Biphilic Functional Surfaces for Frost Prevention and Efficient Active Defrosting

Author:

Saeidiharzand Shaghayegh123,Sadaghiani Abdolali Khalili123,Orejon Daniel4,Sefiane Khellil4,Koşar Ali123ORCID

Affiliation:

1. Faculty of Engineering and Natural Sciences (FENS) Sabanci University Orhanli Tuzla Istanbul 34956 Turkey

2. Sabanci University Nanotechnology and Application Center (SUNUM) Sabanci University Orhanli Tuzla Istanbul 34956 Turkey

3. Center of Excellence for Functional Surfaces and Interfaces for Nano‐Diagnostics (EFSUN) Sabanci University Orhanli Tuzla Istanbul 34956 Turkey

4. School of Engineering, Institute for Multiscale Thermofluids University of Edinburgh Edinburgh Scotland EH9 3FD UK

Abstract

AbstractThe present work addresses the systematic accurate fabrication and design of biphilic surfaces having superhydrophobic circular islands surrounded by a hydrophilic background by investigating their condensation frosting and defrosting behavior. A significant delay in frost formation is observed on samples with higher superhydrophobicity ratio A*, defined as superhydrophobic area to total area ratio. As the superhydrophobic island diameter D increases from D = 500 µm to D = 700 µm (A* from 19.62% to 38.46%), a 50% improvement/delay is observed in terms of frost formation or densification. Besides delaying icing/frosting, the presence of superhydrophobic areas empowers the formation of porous and nonuniform frost structure, which facilitates ice removal during the defrosting process. To this end, as the surface is recovered the ambient temperature, almost complete passive cleaning performance within only 23 s is observed on the biphilic design having superhydrophobic islands with the diameter of D = 500 µm, that is, a superhydrophobicity ratio A* of 19.62%. This work concludes on the optimum biphilic ratio, which is not only effective as a passive method by hindering frosting but also leads to a slush/water free surface after defrosting eased by the Laplace pressure gradient which is imposed by the different biphilic wettability patterns.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3