Increasing the Ionization Energy Offset to Increase the Quantum Efficiency in Non‐Fullerene Acceptor‐Based Organic Solar Cells: How Far Can We Go?

Author:

Gorenflot Julien1ORCID,Alsufyani Wejdan1ORCID,Alqurashi Maryam1ORCID,Paleti Sri Harish Kumar1ORCID,Baran Derya1ORCID,Laquai Frédéric1ORCID

Affiliation:

1. KAUST Solar Center Physical Science and Engineering Division Applied Physics Program King Abdullah University of Science and Technology Thuwal 23955–6900 Kingdom of Saudi Arabia

Abstract

AbstractMolecular engineering of organic semiconductors provides a virtually unlimited number of possible structures, yet only a handful of combinations lead to state‐of‐the‐art efficiencies in photovoltaic applications. Thus, design rules that guide material development are needed. One such design principle is that in a bulk heterojunction consisting of an electron donor and lower bandgap acceptor an offset (ΔIE) of at least 0.45 eV is required between both materials ionization energies to overcome energy level bending at the donor–acceptor interface, in turn maximizing the charge separation yield and the cell's internal quantum efficiency. The present work studies energy losses associated with ΔIE and, based on 24 blends, finds that losses are minimal up to a ΔIE of 0.6 eV. Electroluminescence spectroscopy shows that low energy losses are achieved when the charge transfer state energy (ECT) is similar to the acceptor's optical bandgap (EgA). Further ΔIE increase lowers ECT with respect to EgA, thus decreasing VOC. Within that 0.45–0.6 eV ΔIE sweet range, the fill factor FF, hence the power conversion efficiency, increases only marginally as the FF is often already close to maximal for ΔIE = 0.45 eV. The results are extended to 76 binary and ternary blends.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3