Hydrogel‐Gated Silicon Nanotransistors for SARS‐CoV‐2 Antigen Detection in Physiological Ionic Strength

Author:

Parichenko Alexandra1,Choi Wonyeong2,Shin Seonghwan2,Schlecht Marlena3,Gutierrez Rafael1,Akbar Teuku Fawzul4,Werner Carsten4,Lee Jeong‐Soo2,Ibarlucea Bergoi1ORCID,Cuniberti Gianaurelio1

Affiliation:

1. Institute for Materials Science and Max Bergmann Center for Biomaterials Dresden University of Technology 01069 Dresden Germany

2. Department of Electrical Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea

3. Universitätsklinikum Carl Gustav Carus Dresden 01307 Dresden Germany

4. Max Bergmann Center for Biomaterials Leibniz Institute of Polymer Research Dresden 01069 Dresden Germany

Abstract

AbstractThe recent Coronavirus Disease 2019 (COVID‐19) outbreak strongly propels advancements in biosensor technology, leading to the emergence of novel methods for virus detection. Among them, those using nanostructured field‐effect transistors (FETs) provide an ultrasensitive approach toward point‐of‐care diagnostics. However, the application of these biosensors in analyzing biofluids has been limited by their reduced screening length in high ionic strength liquids. To address this challenge, a solution is presented involving the surface modification of FETs with a hydrogel based on star‐shaped polyethylene glycol. This hydrogel is loaded with specific antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein. By incorporating the hydrogel, the effective Debye length is effectively increased, thereby preserving the sensitivity in biofluids. The efficacy of this approach is demonstrated by employing silicon nanonet‐based FETs for the detection of viral antigens in both buffer and saliva, as well as cultured viral particle dispersions. Moreover, positive and negative patient samples are successfully differentiated, showcasing the practical application of this method. Finally, a theoretical frame is proposed to elucidate the underlying mechanism behind the preservation of sensitivity.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3