Preparation of ROS‐Responsive Exosome Coating of Nitinol Material for Making the Neurointerventional Stent

Author:

Duan Lin1,He Yanyan2,Wu Haigang3,Li Tianxiao2,Liang Jia2,Jia Rufeng2,Guo Dehua2,Lu Taoyuan2,Ma Chi2,Liu Wenbo2,He Yingkun2ORCID

Affiliation:

1. Department of Cerebrovascular Disease and Neurosurgery Henan University People's Hospital Henan Provincial People's Hospital Henan Provincial Neurointerventional Engineering Research Center Henan International Joint Laboratory of Cerebrovascular Disease Zhengzhou 450003 P. R. China

2. Department of Cerebrovascular Disease and Neurosurgery Zhengzhou University People's Hospital Henan Provincial People's Hospital Henan Engineering Research Center of Cerebrovascular Intervention Zhengzhou 450003 P. R. China

3. Henan Key Laboratory of Brain Targeted Bio‐Nanomedicine School of Life Sciences and School of Pharmacy Henan University Kaifeng 475004 P. R. China

Abstract

AbstractNitinol (NiTi) alloy is an ideal material for preparing neurointerventional stents due to its excellent mechanical properties and biocompatibility. However, NiTi stents without surface‐specific functionalization cause a high rate of stent thrombosis and in‐stent restenosis after implantation. In ischemic stroke, exosomes have a role in regulating nervous system development, regeneration, vascular remodeling, and neuroinflammation. In this work, the effect of exosome coating on the biocompatibility of NiTi alloy is evaluated. NiTi alloy is successively immersed in relevant solution (sodium alginate, 3‐aminophenylboronic acid, distearoylphosphatidylethanolamine, and exosomes) to form ROS‐responsive exosome coated surfaces. In vitro experiments (platelets, endothelial cells, smooth muscle cells, and macrophages) and in vivo subcutaneous implantation experiments are performed to test coatings for biocompatibility. The results show that the modified NiTi alloy surface has high hydrophilicity, which has the functions of inhibiting platelet aggregation, promoting endothelialization, inhibiting smooth muscle cell migration, anti‐inflammatory, and good tissue biocompatibility. This study develops exosome neurointerventional stent coating as a bioactive drug via reactive oxygen species accumulation in lesions, thus targeting drug release, inhibiting intimal hyperplasia, and reducing inflammation and thrombosis.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3