Wetlands as a potential multifunctioning tool to mitigate eutrophication and brownification

Author:

Borgström Anna1ORCID,Hansson Lars‐Anders12ORCID,Klante Clemens34,Sjöstedt Johanna1

Affiliation:

1. Department of Biology/Aquatic Ecology Lund University Lund Sweden

2. Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany

3. Department of Water Resources Engineering, Faculty of Engineering Lund University Lund Sweden

4. Sweden Water Research, Ideon Science Park Lund Sweden

Abstract

AbstractEutrophication and brownification are ongoing environmental problems affecting aquatic ecosystems. Due to anthropogenic changes, increasing amounts of organic and inorganic compounds are entering aquatic systems from surrounding catchment areas, increasing both nutrients, total organic carbon (TOC), and water color with societal, as well as ecological consequences. Several studies have focused on the ability of wetlands to reduce nutrients, whereas data on their potential to reduce TOC and water color are scarce. Here we evaluate wetlands as a potential multifunctional tool for mitigating both eutrophication and brownification. Therefore, we performed a study for 18 months in nine wetlands allowing us to estimate the reduction in concentrations of total nitrogen (TN), total phosphorus (TP), TOC and water color. We show that wetland reduction efficiency with respect to these variables was generally higher during summer, but many of the wetlands were also efficient during winter. We also show that some, but not all, wetlands have the potential to reduce TOC, water color and nutrients simultaneously. However, the generalist wetlands that reduced all four parameters were less efficient in reducing each of them than the specialist wetlands that only reduced one or two parameters. In a broader context, generalist wetlands have the potential to function as multifunctional tools to mitigate both eutrophication and brownification of aquatic systems. However, further research is needed to assess the design of the generalist wetlands and to investigate the potential of using several specialist wetlands in the same catchment.

Funder

Svenska Forskningsrådet Formas

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3