Light quality‐dependent roles of REVEILLE proteins in the circadian system

Author:

Hughes Cassandra L.1ORCID,An Yuyan2ORCID,Maloof Julin N.1,Harmer Stacey L.1ORCID

Affiliation:

1. Department of Plant Biology University of California, Davis Davis California USA

2. College of Life Sciences Shaanxi Normal University Xi'an China

Abstract

AbstractSeveral closely related Myb‐like activator proteins are known to have partially redundant functions within the plant circadian clock, but their specific roles are not well understood. To clarify the function of the REVEILLE 4, REVEILLE 6, and REVEILLE 8 transcriptional activators, we characterized the growth and clock phenotypes of CRISPR‐Cas9‐generated single, double, and triple rve mutants. We found that these genes act synergistically to regulate flowering time, redundantly to regulate leaf growth, and antagonistically to regulate hypocotyl elongation. We previously reported that increasing intensities of monochromatic blue and red light have opposite effects on the period of triple rve468 mutants. Here, we further examined light quality‐specific phenotypes of rve mutants and report that rve468 mutants lack the blue light‐specific increase in expression of some circadian clock genes observed in wild type. To investigate the basis of these blue light‐specific circadian phenotypes, we examined RVE protein abundances and degradation rates in blue and red light and found no significant differences between these conditions. We next examined genetic interactions between RVE genes and ZEITLUPE and ELONGATED HYPOCOTYL5, two factors with blue light‐specific functions in the clock. We found that the RVEs interact additively with both ZEITLUPE and ELONGATED HYPOCOTYL5 to regulate circadian period, which suggests that neither of these factors are required for the blue light‐specific differences that we observed. Overall, our results suggest that the RVEs have separable functions in plant growth and circadian regulation and that they are involved in blue light‐specific circadian signaling via a novel mechanism.

Funder

National Institute of Food and Agriculture

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3