Should we consider integrated crop–livestock systems for ecosystem services, carbon sequestration, and agricultural resilience to climate change?

Author:

Franzluebbers Alan J.1ORCID,Hendrickson John R.2

Affiliation:

1. USDA – Agricultural Research Service Raleigh North Carolina USA

2. USDA – Agricultural Research Service Mandan North Dakota USA

Abstract

AbstractContemporary agricultural systems can be generalized as highly specialized operations that are fueled by mechanization; supplied with external nutrients to maximize production; crops protected by petrochemicals to fight against weed, disease, and insect pressures; and livestock protected by therapeutics to ward off virus and bacterial infections when managed in confinement. Such specialized systems have led to low levels of diversity, elevated environmental risks from contamination, loss of soil organic matter, ecological instability, and limited adaptability to climate change. More diversified farming systems are possible, but research required to characterize them in a holistic manner as an alternative to contemporary, specialized systems remains challenging to fund and sustain over time, primarily because they require more labor, management skills, and accessible markets to achieve additional ecological, environmental, and social goals. We share some perspectives as to (1) how specialized systems became the norm and (2) what changes could be made to reverse some ecological risks and environmental declines associated with specialization, acknowledging there is no panacea. Strong evidence exists for perennial forages to restore soil organic carbon (C) and nitrogen, but system‐level analyses of the net balance in greenhouse gas emissions remain to be characterized in the myriad of potential integrated crop–livestock systems that might be deployed across the diversity of edaphic, environmental, and socio‐economic conditions. We suggest there are abundant opportunities for more sustainable agricultural production to sequester soil organic C, reduce greenhouse gas emissions, and develop more climate‐resilient agricultural systems that will be needed in a future dominated by climate change issues.

Publisher

Wiley

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3