ESMAX for spatial agroecology: A conceptual spatial model for the quantification and visualisation of ES performance from different configurations of landscape

Author:

Morris Richard1ORCID,Davis Shannon2,Grelet Gwen‐Aëlle3,Gregorini Pablo1

Affiliation:

1. Department of Agricultural Science, Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand

2. School of Landscape Architecture, Faculty of Environment, Society and Design Lincoln University Lincoln New Zealand

3. Manaaki Whenua—Landcare Research Lincoln New Zealand

Abstract

AbstractIntroductionAgriculture is confronted by the dual challenges of increasing global demand for food production while reducing negative impacts on the environment. One suggested solution is transitioning modern industrial agriculture to more agroecologically‐informed practices, thus realigning increased food production with the carrying capacity of Earth Systems. The transition to multifunctional agroecological systems, that promote the production of multiple ecosystem services (ES) as well as food production, requires an adaptive management process that addresses climate‐change, market complexity, practical implementation and knowledge transfer.Materials & MethodsThis work proposes a spatially explicit methodology to support this process. Spatial agroecology, in this context, combines a new Geographic Information Systems (GIS)‐based model (ESMAX) with development of a ‘solution space’ to assist stakeholders identify configurations of agroecological components (in this case, trees on farm) at the scale of a 1 ha paddock to supply a targeted range of regulating ES (cooling effect, flood mitigation and habitat). ESMAX uses distance‐decay characteristics specific to each type of regulating ES to quantify and visualise the influence of spatial configuration of ES‐supplying tree clumps on overall ES performance.ResultsThe results from this application of spatial agroecology suggest regulating ES production at farm and paddock scale is influenced by the arrangement of trees on farm. ESMAX's results show paddocks with large tree clumps return the best cooling effect, while small clumps deliver the best flood mitigation and most suitable habitat. Evenly dispersed arrangements of small tree clumps provide the best multifunctional performance across all three ES modelled in this work.ConclusionDesigned spatial agroecological interventions can affect landscape multifunctionality at paddock scale, where practical decisions are made and implemented. This provides spatially explicit support of an adaptive management process. Utilising agroecological systems as spatial mechanisms for supplying critical regulating ES also highlights a new function for agriculture in the Anthropocene epoch.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3