Reference evapotranspiration prediction using machine learning models: An empirical study from minimal climate data

Author:

Shaloo 1,Kumar Bipin1,Bisht Himani1,Rajput Jitendra1,Mishra Anil Kumar1,TM Kiran Kumara2ORCID,Brahmanand Pothula Srinivasa1

Affiliation:

1. Water Technology Centre ICAR‐Indian Agricultural Research Institute New Delhi India

2. ICAR‐National Institute of Agricultural Economics and Policy Research (NIAP) New Delhi India

Abstract

AbstractThe scarcity of climatic data is the biggest challenge for developing countries, and the development of models for reference evapotranspiration (ET0) estimation with limited datasets is crucial. Therefore, the current investigation assessed the efficacy of four machine learning (ML) models, namely, linear regression (LR), support vector machine (SVM), random forest (RF), and neural networks (NN), to predict ET0 based on minimal climate data in comparison with the standard FAO‐56 Penman‐Monteith (PM) method. The data on daily climate parameters were collected for the period 2000−2021, including maximum and minimum temperatures (Tmax and Tmin), mean relative humidity (RH), wind speed (WS), and sunshine hours (SSH). The performance of the developed models considering different input combinations was evaluated by using several statistical performance measures. The results showed that the SVM model performed better than the other ML models during training (R2 = 0.985; mean absolute error [MAE] = 0.170 mm/day; mean square error [MSE] = 0.052 mm/day; root mean square error [RMSE] = 0.229 mm/day; mean absolute percentage error [MAPE] = 5.72%) and testing stages (R2 = 0.985; MAE = 0.168 mm/day; MSE = 0.050 mm/day; RMSE = 0.224 mm/day; MAPE = 5.91%) under full dataset scenario. The best performance of the models to estimate was with Tmax, RH, Ws, SSH, and Tmin. The results of the current study are substantial as it offers an approach to estimate ET0 in semi‐arid data‐scarce region.

Publisher

Wiley

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3